В минус на $5000 или в плюс с 1000% ROAS: кейс и антикейс использования умных стратегий Google Ads
Что нужно для того, чтобы автоматические алгоритмы Google работали хорошо, а почему иногда они не приносят ожидаемых результатов, на реальных проектах объясняет основатель агентства Penguin-team Николай Скоропадский.
Интеллектуальное (умное) назначение ставок — это одна из возможностей Google, которая вызывает диаметрально противоположные реакции у специалистов: от «да никогда в жизни, они ж не работают» до «гениальное решение, необходимое всем».
Истина, как обычно, где-то посередине.
Что такое интеллектуальное назначение ставок Google
Интеллектуальное или умное назначение ставок — это система, которая принимает решения о размере ставки в процессе аукциона рекламодателей. Она задействует искусственный интеллект и развивается при помощи машинного обучения. По словам Google, это позволяет находить оптимальный вариант ставки для каждого конкретного пользователя в каждом конкретном случае.
У Google есть три с половиной интеллектуальных стратегий:
- Целевая цена за конверсию.
- Целевая рентабельность инвестиций в рекламу.
- Максимум конверсий.
- И надстройка для ручного управления ставками — Оптимизатор цены за конверсию.
К примеру, если вы выбираете стратегию «Максимум конверсий», Google будет принимать решения на основе вероятности совершения конверсии. Вот как это происходит:
- Вы указываете бюджет.
- Объявление попадает на аукцион.
- Система оценивает вероятность конверсии на основе данных: поисковый запрос, наличие пользователя в аудитории, пол, возраст, время суток, цена товара...
- Система принимает решение о размере ставки. Если вероятность конверсии выше, ставка будет больше. Если ниже — меньше.
- Если пользователь кликает на объявление, вы платите СРС, определенный системой на аукционе.
- Если этот пользователь совершает конверсию, система анализирует его параметры и в следующий раз делает ставку выше для похожих случаев — так как они приводят к конверсии. Так система учится.
Для трех стратегий интеллектуального назначения ставок не нужно указывать ставку самому — Google отталкивается от доступного бюджета. Оптимизатор цены за конверсию работает на основе ставки, которую вы задали вручную: он может повышать и понижать ее исходя из той же вероятности целевого действия.
В Google совершается порядка 4 млрд поисковых запросов в день. Его алгоритмы анализируют около 70 млрд сигналов за секунду. Это всё — данные, на которых система учится принимать более правильные решения и помогать рекламодателю.
И вот тут начинаются споры:
- Действительно ли интеллектуальное назначение ставок правильно принимает решения?
- Насколько велик риск слить весь бюджет и не получить конверсий, продаж или прибыли из-за того, что мы не можем контролировать ставки и направлять систему?
- Стоит интеллектуальное назначение ставок внимания или это способ хорошенько подзаработать для Google?
У нас в Penguin-team есть несколько ярких примеров, которые могут как подтвердить, так и опровергнуть эти опасения.
Кейс: 1045% ROAS с умным назначением ставок
Весной 2019 года к нам в агентство пришел интернет-магазин спортивной одежды и инвентаря из Украины (бренд под NDA). Довольно прозаичная картина:
- расходы на рекламу — 25 000 грн.;
- доход от рекламы — 40 000 грн.;
- ROAS — 161%, что скорее грустно, чем радостно.
Мы проанализировали торговые кампании на предмет самых продаваемых товаров и посмотрели статистику в Google Analytics по этому же направлению, так как туда добавляются данные по продажам и через другие каналы (органика, соцсети, email, и др.). После этого выбрали топовые товары и запустили для них Smart Shopping со стратегией «Максимальная ценность конверсий». Получилась торговая кампания с интеллектуальным назначением ставок, цель которой — обеспечить наибольшую ценность конверсий в рамках бюджета.
Также в таких кампаниях можно задать целевой ROAS через стратегию «Целевая рентабельность инвестиций в рекламу»; но мы рекомендуем это делать не раньше, чем через две недели после старта.
Через месяц результаты улучшились:
-
расходы на рекламу — 21 500 грн.;
-
доход от рекламы — 306 000 грн.;
-
ROAS — 1417%, что не требует комментариев.
Первые полгода результат кампаний колебался от месяца к месяцу, но ROAS не падал ниже 900%. Мы постепенно увеличивали бюджет и следили, чтобы рентабельность кампаний оставалась хорошей. Через шесть месяцев результат стабилизировался. Результаты на седьмой месяц:
-
расходы на рекламу 53 000 грн.;
-
доход от рекламы 550 000 грн.;
-
ROAS 1045%, что все еще исключительно приятно.
Как сделать, чтобы интеллектуальное назначение ставок работало
Первое и главное — использовать его в подходящих случаях. Это не та вещь, которую можно включить в любой кампании и ждать тонны заказов. Поэтому для начала — в каких случаях интеллектуальное назначение ставок не подойдет:
-
Если по семантике мало трафика. Системе нужны данные для обучения. Нет данных — нет нормальных результатов.
-
Если новый продукт для рынка в целом. Опять же, потому что семантики по нему будет немного, частотность невысокая, данных не хватит для толкового обучения.
-
Если у вас низкомаржинальный бизнес. Это касается больше не интеллектуального назначения ставок как такового, а всей контекстной рекламы в целом. Если у вас нет бюджетов на тесты и «свободы маневра» в виде нормальной маржинальности (которая позволит выделять деньги на рекламу), то контекст, вероятно, не лучший выбор. Тем более контекст с автостратегиями, которые, как ни крути, являются инвестицией: сначала вложи в них деньги — потом получишь отдачу.
Если с объемом трафика вопросов нет и бюджет не на минималках, интеллектуальное назначение ставок уже можно пробовать. Что нужно, чтобы не слить деньги? Пара правил:
-
Корректное отслеживание конверсий. Система учится и, если она учится на неправильных данных, результаты тоже будут неправильными. Не запускайте интеллектуальное назначение ставок, пока не убедитесь, что ваши конверсии считаются правильно.
-
Время обучения. На начальном этапе машинное обучение часто допускает ошибки — поэтому первое время конверсий может и не быть много или СРС может заметно колебаться. Это нормально. Google советует дать системе поучиться 1–2 недели, мы рекомендуем увеличить этот срок до 2–6 недель — всё зависит от количества трафика.
-
Правильная стратегия. Если вы используете умные торговые кампании, мы рекомендуем сначала использовать «Максимизацию ценности конверсий» и только потом (если это вам нужно) переходить на «Целевой ROAS» (мы писали об этом у себя в блоге). Если вы работаете с обычными поисковыми кампаниями, подбирайте стратегию, которая нужна вашему бизнесу — и не идет вразрез с его целями. Если у вас нет цели по конверсиям, их цене или рентабельности инвестиций, возможно, вам не нужны интеллектуальные стратегии. Подумайте над тем, чтобы использовать автоматические некоммерческие, скажем, стратегии — как «Целевая доля показов».
Еще раз: трафик, бюджет, отслеживание конверсий — три, можно сказать, ключа успеху.
И тогда да, интеллектуальное назначение ставок и правда может помочь рекламодателю, во-первых, автоматизировать управление ставками, а во-вторых, улучшить результаты рекламной кампании по целевым метрикам: количеству конверсий, СРА, ROAS.
Антикейс: минус $5000 за месяц с умным назначением ставок
Как бы ни хотелось закончить на радостной ноте, из песни слов не выкинешь: интеллектуальный биддинг может хорошенько пнуть рекламодателя, который использует его неосмотрительно.
Вот, к примеру, один из таких случаев.
Зимой 2019 интернет-магазин из США (бренд под NDA), который давно (и успешно) рекламировался в Google Ads, расширял свой ассортимент. Появилась принципиально новая категория товаров. Для быстрого старта он выбрал Smart Bidding — это же такая потенциально эффективная штука!
Результаты через месяц после запуска:
- расход на рекламу $26 406;
- доход с рекламы $21 000;
- ROAS 79%, что, несомненно, исключительно больно.
Когда клиент пришел с жалобой на убыточную кампанию, ее пришлось отключить и дальше настраивать обычную торговую рекламу — без умных стратегий.
Почему умное назначение ставок может работать плохо
Эта часть, в принципе, достаточно предсказуема, если вы внимательно читали текст выше.
Google практически не дает рекламодателю инструментов для контроля интеллектуальных стратегий — они работают на основе искусственного интеллекта и самообучаются при помощи машинного обучения. В таких условиях, если настройки не попадают в рамки «потенциально приемлемых для работы», система все равно продолжает работать и учиться — но требует это уже значительно бОльших ресурсов, чем в нормальных условиях.
Системы на основе ИИ и машинного обучения — это такая топка, которая работает на данных. Эти данные ей нужны постоянно и в нормальном количестве — иначе гореть не будет.
Самая частая причина, почему интеллектуальные стратегии не работают — это отсутствие данных. Это, впрочем, вообще единственная причина. Данных не хватает, если:
- мало семантики;
- по семантике мало трафика;
- мало бюджета для тестирования;
- не настроен трекинг конверсий.
И так далее. Всё упирается в количество данных.
Умное назначение ставок не поможет, если вы рекламируете новый товар или категорию товаров. Оно не сработает, если вам надо «как-то аккуратненько, а то у нас маржа маленькая». И точно не поможет, когда нужно результат прямо сейчас.
Зато если данных хватает — что ж, проверьте еще раз корректность отслеживания конверсий, выберите бестселлеры и, кажется, можно начинать тестировать. У вас весьма неплохие перспективы ;)
Последние комментарии